



### GT2003-39026 Microturbine Developments at Bowman Power Systems – Recuperator Evaluation

David Ainsworth, Mechanical Development Manager

www.bowmanpower.com

# Bewman Presentation Summary

- 1. Alternative recuperator the motivation
- 2. Alternative recuperators the options
- 3. Recuperator Integration
- 4. BPS Historical Perspective
- 5. Engine Control Developments
- 6. Performance Mapping of Baseline Recuperator
- 7. Materials Testing
- 8. Evaluation of Alternative Recuperator Options Conclusions & Summary

# Bewman Recuperator Programme

#### Background to Programme

- Initiated as part of the drive for cost reduction
- Subsequently accelerated due to withdrawal of Solar Turbines from the recuperator market.
- At least six potential alternatives are being evaluated (performance, cost and durability).
- Alternative sources are targeted to be provisionally validated by August 2003.

# Bewman The early years

- Limited alternatives in 1994
- BPS first evaluated aerospace plate and fin units
- Initial Solar units very expensive
- Very limited alternative suppliers as microturbine product was in it's infancy

## Bewman Now - 2003

- At least 8 possible alternatives for Microturbines (data sources identified)
  - ACTE (suppliers literature)
  - Bosal
  - Wilson Turbo Power Inc (www.w-tp.com)
  - IRPS (www.irpowerworks.com, US 6,427,764)
  - Proe 90 (www.proepowersystems.com, ref patent US 6,390, 185)
  - RR (paper 99-GT-369)
  - RSAB (GT-2002-30402)
  - Sumitomo (suppliers sales literature)
  - Toyo (suppliers sales literature)
  - Solar licensee?

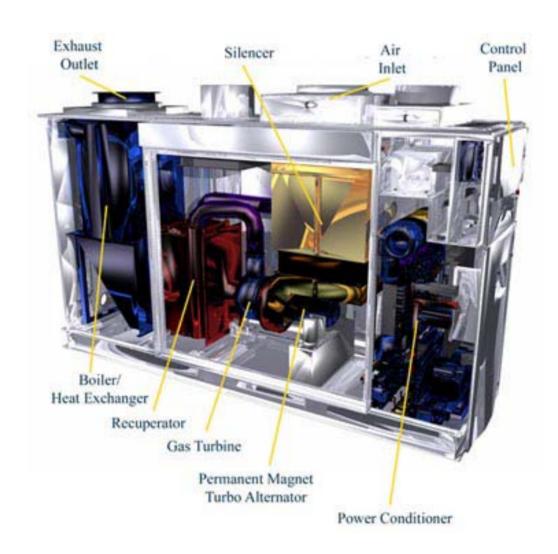
# Bewman Brief Comparison

| Manufacturer | Construction                                  | Architecture                                      | Material | Production Status        |  |
|--------------|-----------------------------------------------|---------------------------------------------------|----------|--------------------------|--|
| ACTE         | Primary surface                               | Annular – continuous<br>wound                     | SS347    | Prototype – good tooling |  |
| Bosal        | Early presentations suggested "plate and fin" | Annular - early presentations suggested involutes | ?        | Prototype                |  |
| DGWT         | Rotary regenerator                            | Annular ceramic core                              | Ceramic  | Prototype                |  |
| IRPS         | Plate and fin                                 | "Box"                                             | SS.347   | Production               |  |
| Proe 90      | Primary Surface                               | Multiple concentric tube                          | SS.347   | Prototype?               |  |
| RR           | Hybrid primary surface/plate and fin          | Annular – continuous<br>wound                     | SS.347   | Prototype                |  |
| RSAB         | Primary surface                               | "Box"                                             | SS       | Prototype                |  |
| Solar        | Primary surface                               | "Box"                                             | SS.347   | Ceased production        |  |
| Sumitomo     | Plate and fin                                 | "Box"                                             | ?        | Production               |  |
| Toyo         | Plate and fin                                 | "Box"                                             | ?        | Production               |  |

# Bewman Early recuperators



- 1997 Plate and fin recuperator evaluation
- Cross flow
- Low effectiveness (circa 75%)
- Very low life!

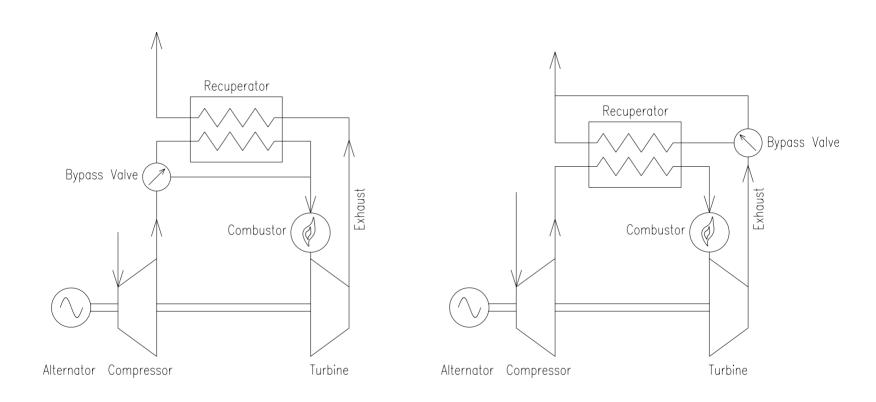

## Bewman Wilson Turbo Power



- Regenerator core
- Interesting alternative?



### Recuperator Integration




## Bewman Package Integration

- The current package is optimised for the Solar recuperator
- Ideally the selected recuperator will not necessitate excessive changes to the package design
- The modularity of the package is attractive, helped by horizontal exhaust gas flow path
- Package width, height etc may be effected by recuperator width limited to circa 750mm
- Overall installed cost a big factor
- Maintenance not to be inhibited/reduced by recuperator choice
- Larger engines with larger recuperator sizes (diameters on annular configurations) may effect packaging philosophy these will have to be reviewed thus <250kW engines may use recuperator supplier A and >250kW engines may use supplier B



### Recuperator Bypass Options



Cold Side Bypass

Hot Side Bypass



### Pros and Cons of Bypass Options

### **Cold Side Bypass**

- Recuperator matrix are exposed to high temperatures during bypass
- Simple integration for box recuperator
- Self cleaning by soaking at temperature is possible

#### **Hot Side Bypass**

- Recuperator matrix are exposed to low temperatures during bypass
- Simple integration for annular recuperator
- Soft start for recuperator is possible



#### Impact on Microturbine Performance

- 1% increase effectiveness = 0.3% increase in electrical efficiency
- 1% increase total dp/p = 1.8% reduction in power

 1% increase total dp/p = 0.3% reduction in electrical efficiency

# Bewman Historical Perspective

- BPS/EES combined experience with Solar recuperators circa 100,000 hrs
- Also used by Turbec, Sweden in box configuration
- Licensed by Capstone, USA in annular configuration
- BPS long life units circa 7,500 hrs and 500 start cycles
- Circa 130 units in operation
- Solar withdrew from market in 2001
- BPS made last buy sufficient for products to end Q1/04
- Solar recuperators not without their life issues associated with integration loads and thermal shocks



- Engine Control & Development
  - Solar limited thermal transient capability required implementation of soft starting to increase cyclic life
  - Less than optimum limitation, ideally recuperator selected will be capable of long life without soft starting techniques being employed



#### Test History

- Work originally conducted on test rig at the University of Sussex
- Single point performance validation undertaken on BPS test rig to qualify the test rig
- Sussex could not undertake cyclic testing
- Decided to continue all work at BPS





© Copyright of Bowman Power Systems - 2003 - All rights reserved



#### Effectiveness vs. Flowrate

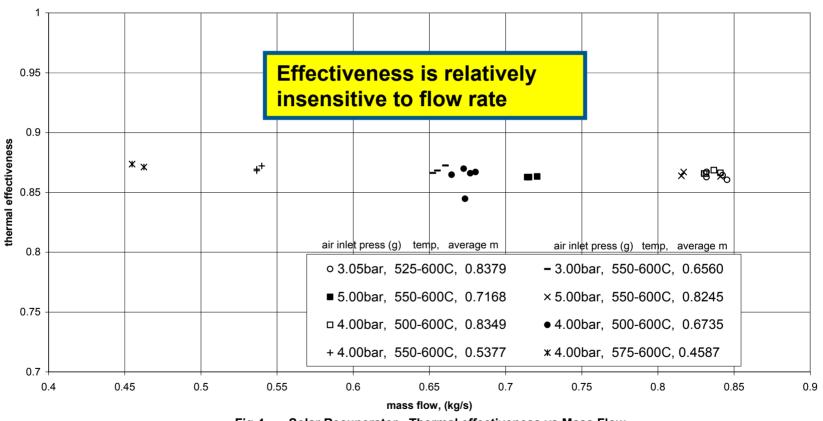



Fig 4. Solar Recuperator - Thermal effectiveness vs Mass Flow Averaged Data Logger readings



#### Pressure Drop Curves

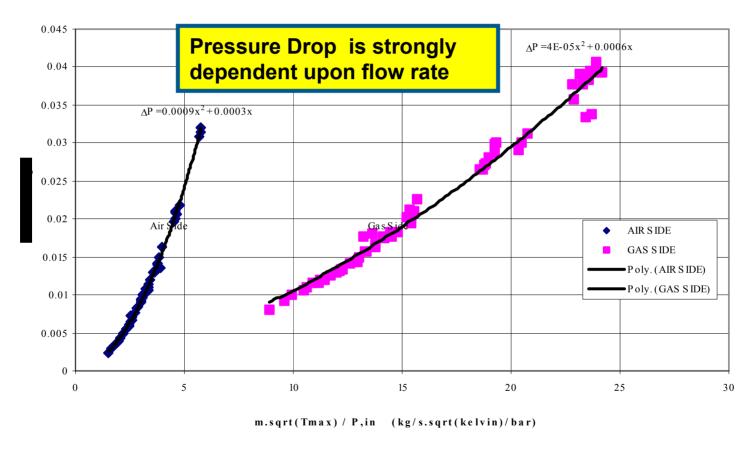



Fig 7 Solar Recuperator Pressure Drops - Air Side and Gas Side. All Pressures (3 bar (g) to 5 bar(g)) and Temperatures (100°C to 600°C)



### Material Testing

- ORNL (Oak Ridge) have raised concerns about corrosion of SS347 by water in flue gas
- BPS is following material test programmes at ORNL and NPL

| General temperature ratings: | deg C   |
|------------------------------|---------|
| 400 series ferritic alloys   | 600     |
| 300 series austenitic alloys | 650     |
| Advanced austenitic alloys   | 750     |
| Nickel-based super alloys    | 800-850 |
| NiCrAl or ODS FeCrAl         | 900     |



#### Material Requirements

# Satisfactory combination of the following attributes:

- Stress rupture
- Creep
- Fatigue
- Oxidation/corrosion
- Workability
- Joinability
- Cost



### **Evaluating Recuperators**

#### Objectives -

- To evaluate the life of the recuperators.
- To evaluate the % leak rate at the anticipated operating pressure.
- To confirm the manufacturers effectiveness and pressure drop claims.
- To evaluate the integration complexity.



## Bewman Alternative Suppliers

- In the last 3 years there have been many alternative suppliers publicising their products in the public domain, either through technical conferences or patent publications
  - Toyo supplier to Honeywell/Allied Signal Parallon 75
  - Bosal have presented papers at various conferences
  - RR have presented papers at various conferences
  - RSAB have presented papers at various conferences
  - IRPS produced their own recuperator for their own engine and have won several supply contracts
  - EES have patents on their own recuperator design
  - DGWT regenerator
  - ACTE



### Requirements

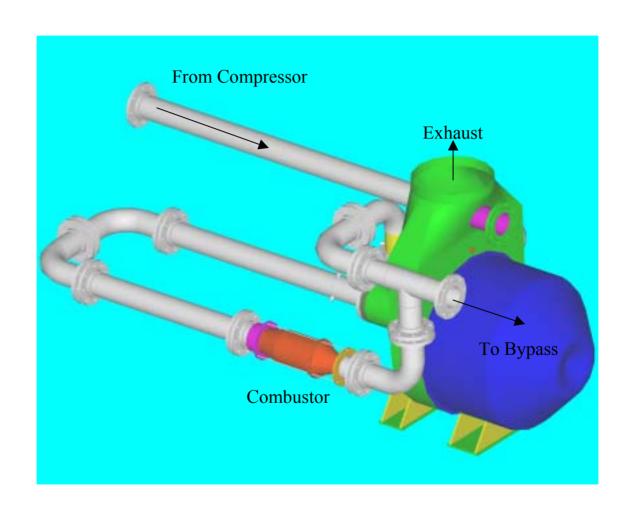
| <ul><li>Effectiveness</li></ul>               | Desirable<br>90% | Essential<br>85% |
|-----------------------------------------------|------------------|------------------|
| <ul> <li>Total pressure drop</li> </ul>       | <4%              | <5%              |
| <ul> <li>Hot gas inlet temperature</li> </ul> | 670°C            | 650°C            |
| <ul><li>Life (operating hours)</li></ul>      | 50,000           | 25,000           |
| <ul><li>Life (start/stop cycles)</li></ul>    | 10,000           | 5,000            |



### Recuperator Test Plan

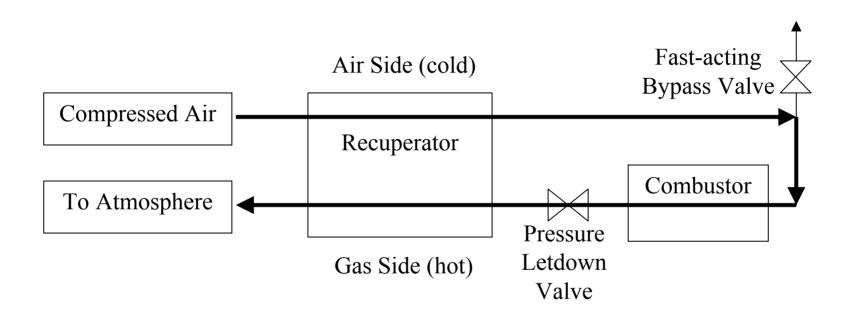
#### Recuperator Test Plan





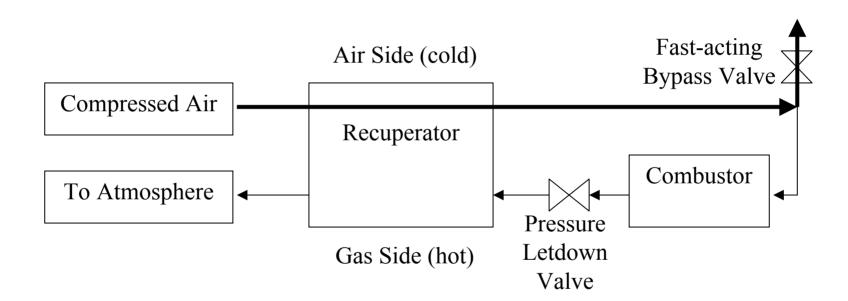

- 3. Subject the recuperator to 1000 hot pressure cycles
- 4. Final leak test
- 5. End of test effectiveness and pressure drop check





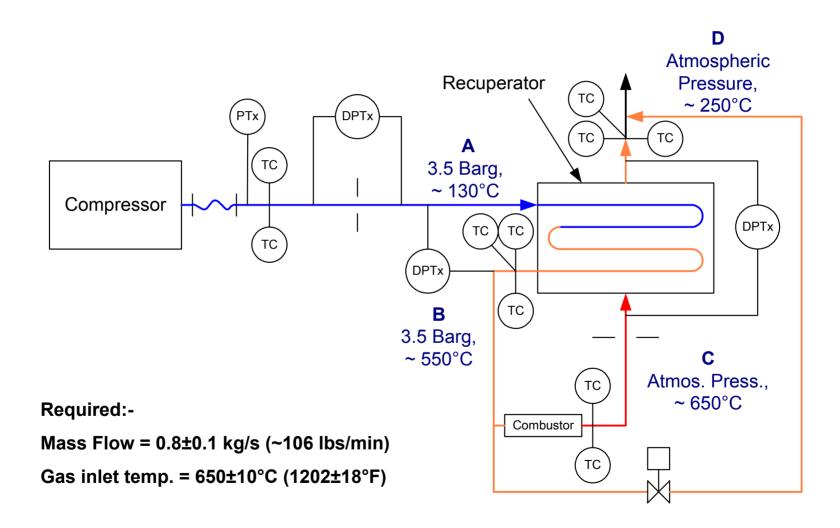

### **Hot Cycle Tests**






### **Heating Cycle**

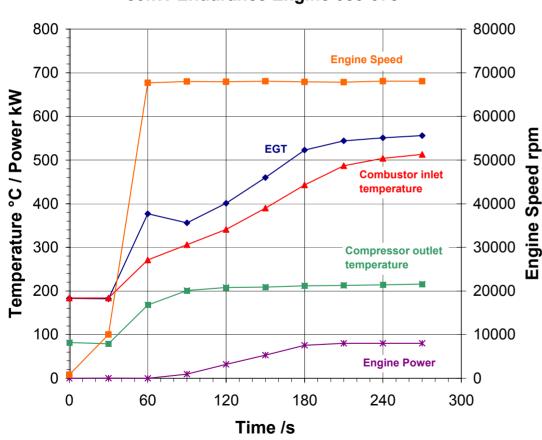





### **Cooling Cycle**






### Test Rig - P. & I. Diagram



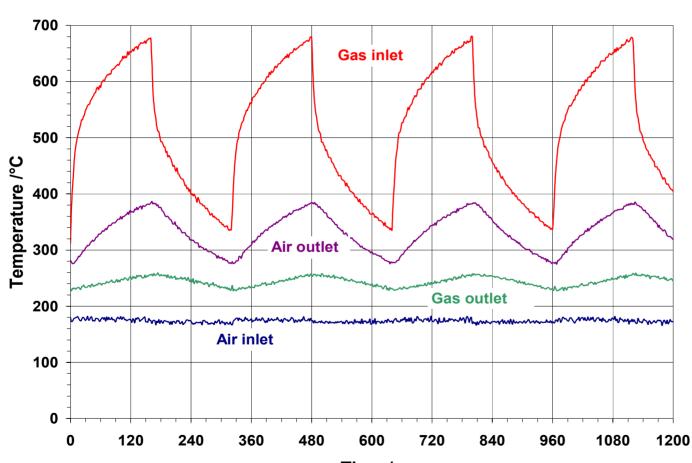


### **Engine Start Curve**

#### 80kW Endurance Engine 080-078



Cycle time for a standard system ~ 4 minutes


However, time for the EGT to rise between 200°C (392°F) and 550°C (1022°F) is approx. 3 minutes.

© Copyright of Bowman Power Systems - 2003 - All rights reserved



### Hot Cycling Time Scale

#### **Hot Cycle Testing**



Please note: - Due to a calibration error at this time the peak temperature value is reading 26°C (47°F) high.



#### Performance – Solar Baseline Recuperator

dp/p

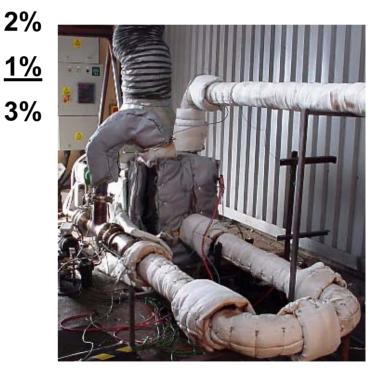
Effectiveness 88%

Pressure Drops: <u>dp</u>

Air Side 80 mbar

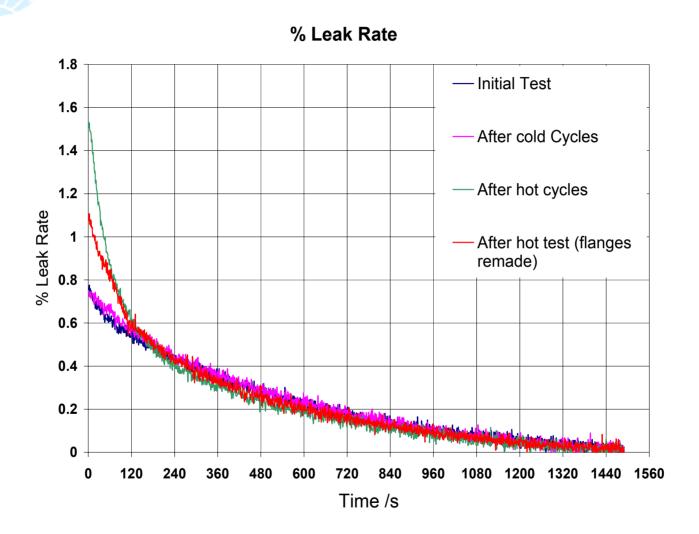
Gas Side 7 mbar

Total


Mass Flow 0.7 kg/s

Air Pressure 4.5 bara

**Inlet Temperatures:** 


Gas Side 610°C

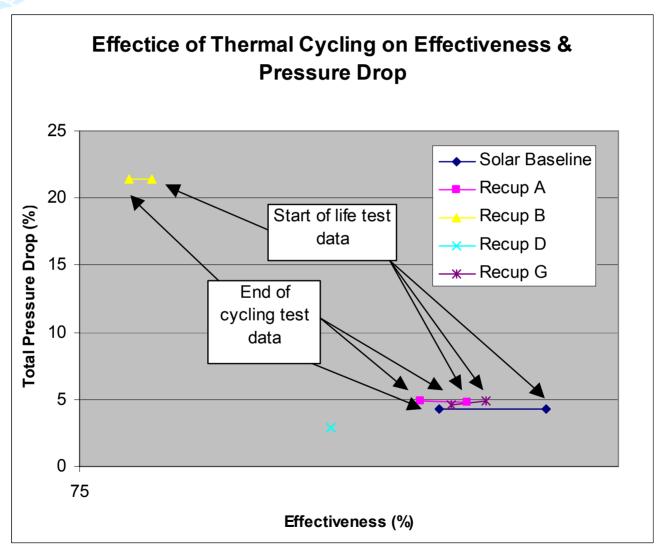
Air Side 130°C





### Typical Leak Test Result




© Copyright of Bowman Power Systems - 2003 - All rights reserved

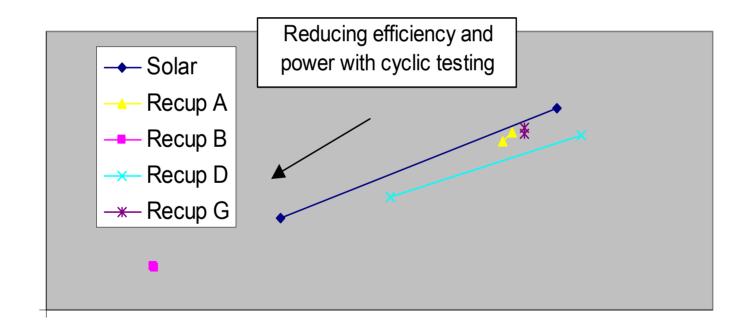
### Bewman As Tested Performance

| Feature                           | Solar<br>(as tested<br>at BPS) | Recup<br>A | Recup<br>B | Recup<br>C     | Recup<br>D | Recup<br>E     | Recup<br>F     | Recup<br>G |
|-----------------------------------|--------------------------------|------------|------------|----------------|------------|----------------|----------------|------------|
| Pressure<br>Drop – Air<br>Side    | 2%                             | <b>V</b>   | >>         | Not yet tested | >          | Not yet tested | Not yet tested | <          |
| Pressure<br>Drop – Gas<br>Side    | 1%                             | ^          | >>         | Not yet tested | <          | Not yet tested | Not yet tested | ^          |
| Pressure<br>Drop – Total          | 3%                             | ^          | >>         | Not yet tested | <          | Not yet tested | Not yet tested | ^          |
| Effectiveness                     | 88%                            | <b>V</b>   | <<         | Not yet tested | <          | Not yet tested | Not yet tested | <          |
| Leakage -<br>Start                | 0                              | <b>\</b>   | ^          | Not yet tested | >          | Not yet tested | Not yet tested | >          |
| Leakage –<br>End (1000<br>cycles) | 0                              | ٧          | ۸          | Not yet tested | ^          | Not yet tested | Not yet tested | ^          |



#### Bewman Performance – before and after cyclic testing

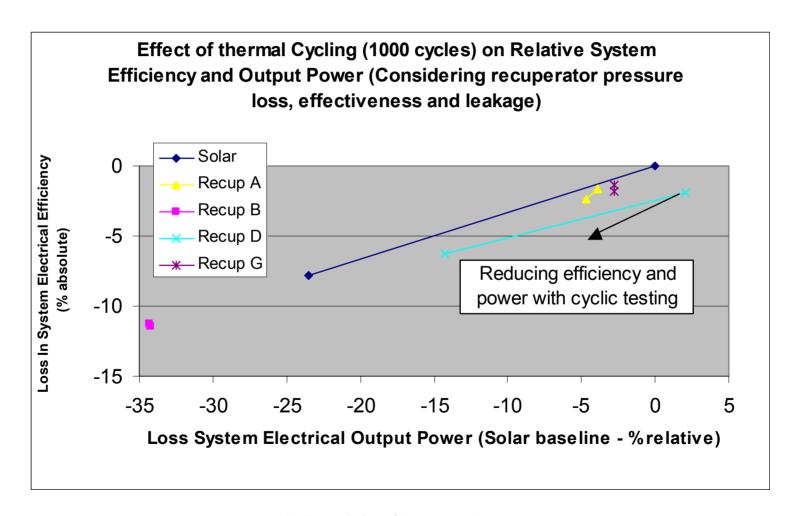



# Bewman Explanation

- Pressure drop changes likely due to be experimental error rather than fouling
- Effectiveness change possibly a leakage effect
- Leakage impact shown on next slide



# Effect of thermal Cycling (1000 cycles) on Overall System Efficiency and Output Power (Considering recuperator pressure loss, effectiveness and leakage)


System Electrical Efficiency (%)



#### System Electrical Output Power (kW)



#### Bewman Relative Loss in performance after 1000 cycles



#### Bawmon System efficiency and output power impacts

- Effect dominated by leakage
- 5% leak will reduce power by >12.5%
- 5% leak will reduce system efficiency by >4%
- Leakage knock on effects in engine life
  - Runs hotter affecting liner etc
  - Recuperator runs hotter accelerated degradation

# Bewman Life Comparison

| Feature                                         | Solar         | Recup<br>A | Recup<br>B | Recup<br>C     | Recup D | Recup E        | Recup F        | Recup G       |
|-------------------------------------------------|---------------|------------|------------|----------------|---------|----------------|----------------|---------------|
| Recuperators<br>Built                           | >500          | <10        | <10        | <10            | >10     | >10            | >100           | Circa<br>1000 |
| Test Life (Rig cycles)                          | 300           | 1100       | 1000       | Not yet tested | 1900    | Not yet tested | Not yet tested | 1972          |
| In Service<br>Cycles –<br>highest<br>Individual | Circa<br>1000 | NA         | NA         | NA             | >1200   | >1000          | >3000          | >1000         |
| In Service<br>Hours –<br>highest<br>individual  | >7500         | NA         | NA         | NA             | NA      | >1500          | >8000          | >8000         |
| Fleet Hours                                     | >200K         | NA         | NA         | NA             | NA      | NK             | >100K          | >100K         |
| Fleet Starts                                    | >50000        | NA         | NA         | NA             | NA      | NK             | >10000         | >30000        |

# Bewman Integration Aspects

| Feature                                | Solar | Recup A                       | Recup B | Recup C | Recup D | Recup E | Recup F | Recup G |
|----------------------------------------|-------|-------------------------------|---------|---------|---------|---------|---------|---------|
| Туре                                   | Box   | Annular                       | Annular | Box     | Annular | Annular | Box     | Box     |
| Ducting Included?                      | No    | TBA                           | TBA     | TBA     | No      | Yes     | Yes     | TBA     |
| Mass – matrix + ducting                | Ref   | >                             | >       | >       | =       | =       | =       | =       |
| Sealing Issues                         | Ref   | Worse                         | Worse   | Same    | Same    | Better  | Same    | Better  |
| Assembly time                          | Ref   | Better<br>(novel<br>fastener) | Worse   | Better  | Same    | Better  | Same    | Same    |
| Field<br>Replacement                   | Ref   | Same                          | Same    | Same    | Same    | Worse   | Same    | Same    |
| Integration sensitivity to performance | Ref   | Better                        | Better  | Better  | Same    | Same    | Same    | Better  |

# Bewman Integration Issue

- Performance and comments are based on configurations as supplied for testing purposes
- Interfaces will be optimised for engine productions
- Engine integration will be reviewed thoroughly in the next few months

# Bewman Commercial Aspects

- Selection will also be related to
  - Cost of ownership (through life)
  - Supplier maturity
  - Capital investment required
  - Warranty terms

### Bewman Conclusions & Summary

- There are more choices for recuperator now then there were 8 years ago
- Manufacturing developments have moved on, materials have not
- BPS are close to completing their recuperator evaluation program
- One will be selected to supersede the Solar unit for introduction in 2004 during Q3/2003
- So far 6 different units have been tested (in some cases more than one sample per supplier)
- Several are comparative to the Solar baseline performance
- Several exceed the Solar durability on the test rig
- At least two more manufacturers products to be tested before final selection is made
- When considering through life cost, effectiveness, pressure drop and leakage are crucial